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Abstract

While intracellular adenosine triphosphate (ATP) occupies a key
position in the bioenergetic metabolism of all the cellular compart-
ments that form the tumor microenvironment (TME), extracellular
ATP operates as a potent signal transducer. The net effects of
purinergic signaling on the biology of the TME depend not only on
the specific receptors and cell types involved, but also on the acti-
vation status of cis- and trans-regulatory circuitries. As an addi-
tional layer of complexity, extracellular ATP is rapidly catabolized
by ectonucleotidases, culminating in the accumulation of metabo-
lites that mediate distinct biological effects. Here, we discuss the
molecular and cellular mechanisms through which ATP and its
degradation products influence cancer immunosurveillance, with a
focus on therapeutically targetable circuitries.
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Introduction

According to a widely accepted model, malignant transformation is

initiated by relatively common genetic or epigenetic alterations that

incapacitate tumor-suppressing mechanisms (for the most part,

mechanisms that ensure the preservation of cellular homeostasis) as

they activate oncogenic drivers (generally, processes that enable

accrued anabolism in support of hyperproliferation) (Hanahan &

Weinberg, 2011; Timp & Feinberg, 2013). The vast majority of newly

formed malignant cells, however, appears to be controlled by the

host immune system prior to forming symptomatic tumors (Vesely &

Schreiber, 2013; Lopez-Otin & Kroemer, 2021). While in most cases

such control involves the definitive “eradication” of malignant cell

precursors, in some instances newly formed cancer cells can resist

immune attacks and generate a rudimentary tumor microenviron-

ment that enables some degree of proliferation, a dynamic battle

between emerging tumors and their host commonly referred to as

“equilibrium” (Vesely & Schreiber, 2013). In this context, malignant

cells can acquire additional genetic and epigenetic alterations that

either (i) impair their ability to initiate anticancer immune

responses, such as the loss or downregulation of genes coding for

endogenous danger signals, (ii) limit their visibility to immune

effector cells, such as the loss of MHC class I-coding genes or beta-2-

microglobulin (B2M), (iii) increase their resistance to immune

effector molecules, such as the loss of caspase 8 (CASP8), or (iv)

establish a state of local immunosuppression, such as the upregula-

tion of CD274 (best known as PD-L1) (Galluzzi et al, 2018). In this

context, the equilibrium between cancer cells and the host immune

system ceases to exist in favor of an “escape” phase culminating in

uncontrolled tumor growth and metastatic dissemination (Dunn

et al, 2002; Dersh et al, 2021).

Importantly, the TME of malignancies that escaped immuno-

surveillance (Rao et al, 2019) undergoes a considerable reconfigura-

tion, generally involving the accumulation of immunosuppressive

myeloid and lymphoid cells including M2-like tumor-associated

macrophages (TAMs) and CD4+CD25+FOXP3+ regulatory T (TREG)

cells at the expense of M1-like TAMs, type I conventional dendritic

cells (cDC1s), TH1 CD4+ T cells, CD8+ cytotoxic T lymphocytes

(CTLs), and natural killer (NK) cells, all of which promote tumor-

targeting immunity (Talmadge & Gabrilovich, 2013; Mantovani

et al, 2017; Lee & Radford, 2019; Sprooten et al, 2019; Togashi et al,

2019). Beyond such a general trend, however, the precise immune
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contexture of each neoplasm exhibits considerable heterogeneity

(De Sousa et al, 2013; Vitale et al, 2021) and has a major impact on

disease course and response to therapy (Fridman et al, 2017).

Indeed, it has now become clear that the efficacy of most anticancer

agents commonly employed in the clinic, encompassing cytotoxic

chemotherapeutics, radiation therapy (RT), and targeted anticancer

agents, relies at least partially on the (re)activation of immuno-

surveillance (Galluzzi et al, 2020; Rodriguez-Ruiz et al, 2020;

Petroni et al, 2021). In line with this notion, considerable efforts are

being dedicated to the identification of clinically relevant

approaches to alter the TME in favor of treatment efficacy, espe-

cially for tumors that exhibit rather scarce infiltration by immune

effector cells, such as luminal breast cancer and pancreatic carci-

noma (Kroemer et al, 2015; Ho et al, 2020).

All cellular components of the TME including malignant and

immune cells engage in a dynamic competition for nutrients,

oxygen, and trophic signals (all of which are generally scarce as a

consequence of relatively poor vascularization) (Martinez-

Outschoorn et al, 2017; O’Sullivan et al, 2019; Garner & de Visser,

2020). Moreover, the availability of nutrients, oxygen, and trophic

signals is not equal across all tumor regions and is not constant over

time (e.g., before and after therapy), hence constituting a major

driver of intratumoral heterogeneity (ITH) (De Sousa et al, 2013;

Vitale et al, 2021). Indeed, such restrictions de facto operate as

Darwinian pressures, fostering the selection of cells with an accrued

capacity to harness alternative carbon sources (e.g., lactate, extra-

cellular amino acids) for catabolic and anabolic reactions in support

of proliferation and tolerance to hypoxia (Chang et al, 2015; Xiao

et al, 2019).

Adenosine triphosphate (ATP) occupies a key position in the

overall configuration of the TME. On one hand, intracellular ATP is

crucial for each cellular TME component to survive and mediate its

functions (including proliferation, for malignant and non-terminally

differentiated immune cells) (Leone & Powell, 2020; Bergers &

Fendt, 2021). On the other hand, the pool of ATP that accesses the

TME upon active secretion by living or dying cells into the extracel-

lular space constitutes a major signal transducer (Di Virgilio et al,

2018). The net effect of ATP signaling on the TME, however,

depends on multiple factors, including the presence of extracellular

ATP-degrading enzymes as well as the expression pattern of

purinergic receptors. Here, we will critically discuss the molecular

and cellular mechanisms through which extracellular ATP and its

degradation products influence the crosstalk between malignant

and immune cells and present recent advances on the purinergic

system as a potential target for the development of novel anticancer

interventions.

Extracellular ATP homeostasis in the TME

Since ATP cannot be synthesized in the extracellular milieu, the

microenvironmental levels of ATP are entirely controlled by the

balance between its secretion/release and degradation (Fig 1).

Adenosine triphosphate secretion is an active, regulated process

that can occur via multiple mechanisms and involve different cellu-

lar sources. Molecular mechanisms for ATP secretion encompass:

(i) exocytosis of ATP-containing vesicles, a process that may (but

does not necessarily) involve cell death (Imura et al, 2013; Martins

et al, 2014) and mechanistically relies on vesicular loading by solute

carrier family 17 member 9 (SLC17A9) (Imura et al, 2013; Cao et al,

2014) and the SNAP receptor (SNARE)- and Rho-associated, coiled-

coil containing protein kinase 1 (ROCK1)-dependent fusion of

exocytosis-competent ATP-rich vesicles with the plasma membrane

(Imura et al, 2013; Martins et al, 2014); (ii) liberation of cytosolic

ATP molecules via gap junction protein alpha 1 (GJA1, best known

as CX43) hemichannels at gap junctions (Stout et al, 2002; Eltzschig

et al, 2006; Kang et al, 2008); and (iii) gradient-driven efflux via

oligomeric pannexin 1 (PANX1) channels (also known as “pannex-

ons”) (Dahl, 2015), which are sensitive to activation by mechanical

forces (Bao et al, 2004), by the pro-inflammatory CASP1 (Narahari

et al, 2021), and by apoptotic caspases such as CASP3 and CASP7

(Chekeni et al, 2010; Medina et al, 2020). That said, while both

vesicular ATP secretion and PANX1-dependent release have been

documented in living and dying malignant cells (Martins et al,

2014; Martin et al, 2017), CX43 hemichannels appear to be mostly

operational in non-malignant cells of the TME, including astrocytes

(Stout et al, 2002), as well as (at least potentially) neutrophils

(Dosch et al, 2018) and macrophages (Dosch et al, 2019). Indeed,

while both neutrophils and macrophages have been shown to

release ATP via CX43 hemichannels in non-oncological settings,

whether such function is preserved in TAMs and tumor-infiltrating

neutrophils (TINs) remains to be elucidated. Along similar lines,

platelets are known as major sources of extracellular ATP upon

degranulation (Yeaman, 2014), but their contribution to extracellu-

lar ATP availability in the TME has just begun to emerge (Schu-

macher et al, 2013; Gaertner & Massberg, 2019). Additional cellular

compartments that may secrete ATP in the TME encompass (at least

in some settings) endothelial cells (S�aez et al, 2018; Yang et al,

2020d), fibroblasts (Pinheiro et al, 2013; Murata et al, 2014),

dendritic cells (DCs) (Tappe et al, 2018; Martinek et al, 2019), and

activated CTLs (Tokunaga et al, 2010). Importantly, while some

cells spontaneously secrete at least some ATP in their physiological

status, for the most part, ATP is actively released in the context of

adaptive responses to microenvironmental perturbations, including

mechanical cues (Bao et al, 2004), inflammatory signals (Beckel

et al, 2018), hypoxia (Lim To et al, 2015), and exposure to a variety

of cancer therapeutics (Michaud et al, 2011; Tatsuno et al, 2019;

Rodriguez-Ruiz et al, 2020). In most such instances, abundant ATP

secretion by stressed cells (which is key for extracellular ATP to

mediate immunostimulatory effects, see below) involves functional

autophagic responses (Michaud et al, 2011), potentially linked to

the ability of autophagy to preserve intracellular ATP pools during

stress (Rybstein et al, 2018; Anderson & Macleod, 2019). Consistent

with this notion, genetic and pharmacological interventions aimed

at blocking or boosting autophagic responses in cancer cells have

been consistently associated with reduced and increased ATP secre-

tion, respectively, in response to immunogenic chemotherapy

(Michaud et al, 2011; Pietrocola et al, 2016; Chen et al, 2019; Kepp

& Kroemer, 2020; Wang et al, 2020). Obviously, all dying cells

abruptly release their cytosolic ATP pool when they undergo plasma

membrane permeabilization (PMP) as the final step of cellular

demise. However, while PMP itself has now been shown to be an

active (rather than an osmosis-driven) process even in the context

of post-apoptotic, secondary necrosis (Kayagaki et al, 2021), the

consequent spillage of cytosolic content into the extracellular milieu

remains a largely unregulated phenomenon.
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Figure 1. Extracellular ATP homeostasis in the tumor microenvironment.

The concentration of extracellular ATP in the tumor microenvironment is determined by the balance between ATP release and degradation. A variety of cells release ATP
either as part of their physiological state or as they respond to stress and potentially die, including cancer cells, dendritic cells (DCs), tumor-infiltrating neutrophils (TINs),
tumor-associated macrophages (TAMs), and platelets. Extracellular ATP is catabolized by the sequential activity of ectonucleoside triphosphate diphosphohydrolase 1
(ENTPD1, best known as CD39), which converts ATP into ADP and AMP, and 5’-nucleotidase ecto (NT5E, best known as CD73), which converts AMP into adenosine (ADO).
CD39 and CD73 are expressed by multiple cell type that populate the tumor microenvironment, including some malignant cells, cancer-associated fibroblasts (CAFs),
exhausted cytotoxic T lymphocytes (CTLs), regulatory T (TREG) cells, an immunosuppressive subset of natural killer (NK) cells, M2-like TAMs, and myeloid-derived
suppressor cells (MDSCs). Hypoxia is a major driver of ATP degradation in the tumor microenvironment.
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Extracellular ATP is rapidly catalyzed by the sequential activity

of two ectonucleotidases, that is, ectonucleoside triphosphate

diphosphohydrolase 1 (ENTPD1, best known as CD39), which

converts ATP into ADP and AMP, and 5’-nucleotidase ecto (NT5E,

best known as CD73), which converts AMP into adenosine as the

rate-limiting step of this enzymatic cascade (Allard et al, 2020;

Moesta et al, 2020). CD39 is mostly expressed by TREG cells (Borsel-

lino et al, 2007), M2-like TAMs (d’Almeida et al, 2016), and

myeloid-derived suppressor cells (MDSCs, an immature population

of myeloid cells with potent immunosuppressive activity) (Li et al,

2017), as well as by specific cancer cell types, such as adult T-cell

leukemia/lymphoma cells (Nagate et al, 2021), type 16 human

papillomavirus (HPV-16)-associated cervical carcinoma cells (de

Lourdes Mora-Garc�ıa et al, 2019), and ovarian carcinoma cells

(H€ausler et al, 2011). Moreover, CD8+ CTLs undergoing terminal

exhaustion as a consequence of chronic antigen stimulation gener-

ally exhibit a CD39+ phenotype (Canale et al, 2018). Conversely,

CD73 is expressed by a wide variety of malignant cells as well as by

cancer-associated fibroblasts (CAFs) (Yu et al, 2020), TREG cells

(Stagg et al, 2011), and a regulatory subset of NK cells (Neo et al,

2020). Interestingly, the whole-body deletion of purinergic receptor

P2X 7 (P2RX7), which codes for one of the main receptors of extra-

cellular ATP, has a major impact on extracellular ATP levels in the

TME of experimental P2RX7-competent melanomas (De Marchi

et al, 2019), at least in part as a consequence of altered tumor infil-

tration by CD39+ and CD73+ TREG cells and decreased ATP release

by TAMs (De Marchi et al, 2019). Such an effect, however, cannot

be recapitulated by the pharmacological P2RX7 antagonist A740003

as a result of its mixed activity on immune cells (it fails to alter

tumor infiltration by TREG cells, decreases the abundance of intratu-

moral CD39+ and CD73+ effector T (TEFF) cells, and inhibits ATP

secretion by TAMs) and malignant cells (it favors ATP secretion by

malignant cells) (De Marchi et al, 2019).

Of note, extracellular ATP degradation does not necessarily

require the expression of CD39 and CD73 on the same cell (in cis),

but can also occur efficiently when these ectonucleotidases are

expressed by different cellular compartments that are in proximity

to each other within the TME (Schuler et al, 2014). CD73 is abun-

dant in TREG cell-derived exosomes (Smyth et al, 2013), which are

highly mobile and hence further promote the overall catalytic effi-

ciency of ATP degradation within the TME. Moreover, CD38 (also

known as cyclic ADP-ribose hydrolase) and ectonucleotide

pyrophosphatase/phosphodiesterase 1 (ENPP1), which are

expressed by some cancer cells and exhausted T cells, can compen-

sate for limited CD39 activity as they catalyze the conversion of

extracellular NAD+ into ADP ribose and AMP (Morandi et al, 2015).

Finally, the expression of both CD39 and CD73 can be upregulated

by hypoxia, which is relatively common in the TME of solid

neoplasms, via a transcriptional mechanism that involves hypoxia-

inducible factor 1 subunit alpha (HIF1A, best known as HIF-1a)
(Giatromanolaki et al, 2020; Synnestvedt et al, 2002).

In summary, the levels of extracellular ATP in the TME are

dynamically determined by the mutually opposed inputs of secre-

tion/release vs. degradation. As the factors governing these aspects

of the ATP biology exhibit a considerable degree of ITH, regional

and temporal fluctuations in extracellular ATP levels are likely to

play a major role in the outcome of purinergic signaling in the TME,

as discussed further below.

Immunostimulation by extracellular ATP

Extracellular ATP mediates two main functions: (i) It operates as a

chemotactic cue for myeloid cells, upon binding to the purinergic

receptor P2Y2 (P2RY2), a metabotropic receptor (Elliott et al, 2009;

Chekeni et al, 2010), and (ii) it promotes activation of the inflamma-

some and hence CASP1-dependent secretion of interleukin 1 beta

(IL1B) and IL18 upon binding to P2RX7, an ionotropic receptor (Per-

regaux et al, 2000). Importantly, both these effects are required for

the optimal activation of tumor-specific immune responses by (and

hence the complete efficacy of) immunogenic chemotherapeutics

such as anthracyclines and oxaliplatin, as demonstrated in P2ry2�/�,
P2rx7�/�, Casp1�/�- and Il18�/� mice, as well as mice lacking a core

component of the inflammasome (Nlrp3�/� mice), the main IL1B

receptor (Il1r1�/� mice) or treated with a purinergic receptor antag-

onist (suramin) or an IL1B-blocking antibody (Ghiringhelli et al,

2009; Aymeric et al, 2010; Ma et al, 2013).

In this setting, DC precursors newly recruited to the TME via

ATP released by cancer cells succumbing to immunogenic cell

death (ICD) not only mature upon ATP-driven inflammasome acti-

vation and migrate to tumor-draining lymph nodes or tertiary

lymphoid structures to prime adaptive anticancer immunity, but

also recruit a population of IL17-producing cd T cells that is critical

for tumor infiltration by primed CTLs (Ma et al, 2011). In accor-

dance with this notion, optimal anticancer immune responses (and

consequent superior therapeutic efficacy) driven by immunogenic

chemotherapeutics are compromised in Il17a�/� and Il17ra�/�

mice (Ma et al, 2011). Intriguingly, it has recently shown that the

chemotactic activity of ATP on DCs also involves P2RX7 and

PANX1 (Saez et al, 2017), suggesting the existence of a feed-

forward loop whereby intracellular ATP stores may contribute to

DC migratory capacity (Saez et al, 2017). Moreover, elevated levels

of extracellular ATP appear to induce pyroptosis in P2RX7+ M2-like

TAMs, hence supporting T cell-mediated antitumor immunity upon

the depletion of immunosuppressive cells from the TME (Bidula

et al, 2019).

Importantly, the net immunomodulatory effect of extracellular

ATP depends on the activation of additional signaling pathways.

Indeed, the PANX1-dependent co-release of ATP and a wide panel

of metabolites including ADP, AMP, GMP, creatine, spermidine, and

glycerol-3-phosphate (G3P) by dying cells reportedly promote the

removal of cell corpses while preventing the initiation of inflamma-

tory reactions (Medina et al, 2020; Narahari et al, 2021). Moreover,

extracellular ATP can have direct tumorigenic functions. Specifi-

cally, the cancer cell-driven release of ATP from platelets initiates a

P2RY2-dependent signaling cascade that promotes tumor extravasa-

tion and metastatic dissemination upon the opening of endothelial

barriers (Schumacher et al, 2013; Chen et al, 2019; Wang et al,

2020). The autophagy-dependent secretion of ATP by melanoma

cells has been shown to promote invasiveness and resistance to the

BRAF inhibitor vemurafenib, a process that requires P2RX7 expres-

sion in the malignant cell compartment (Martin et al, 2017). Similar

findings have been obtained with human triple-negative breast

cancer (TNBC) MDA-MB-231 cells upon the ATP-dependent activa-

tion of the transcription factor SRY-box transcription factor 9

(SOX9) (Yang et al, 2020a). Finally, NME/NM23 nucleoside diphos-

phate kinase 1 (NME1, best known as NDPK-A) and NME2 (best

known as NDPK-B) expression on extracellular vesicles from MDA-
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MB-231 cells reportedly support the formation of pulmonary meta-

static niches as a consequence of extracellular ATP generation

in situ and consequent activation of purinergic receptor P2Y1

(P2RY1) (Duan et al, 2021).

Consistent with the multipronged effects of extracellular ATP on

the TME, a large body of clinical literature suggests that genetic or

epigenetic defects affecting ATP signaling influence disease outcome

in cancer patients in a context-dependent manner (Table 1). For

instance, while loss-of-function polymorphisms in P2RX7 (rs3751143;

rs208294) have been associated with advanced stage or poor disease

outcome in cohorts of patients with breast carcinoma (Ghiringhelli

et al, 2009), chronic lymphocytic leukemia (CLL) (Thunberg et al,

2002; Wiley et al, 2002; Zhang et al, 2003), and papillary thyroid

carcinoma (PTC) (Dardano et al, 2009), no impact on

Table 1. Pathophysiological relevance of extracellular ATP signaling in human cancer.

Cancer
No.
patients Variable Technology Impact References

Breast cancer 225 P2RX7 rs3751143 SNP analysis Metastatic dissemination
Decreased OS

Ghiringhelli et al
(2009)

1,067
1,992

BECN1 Gene expression profiling Improved disease outcome Tang et al (2015)

152 MAP1LC3B IHC Improved MFS
Improved OS

Ladoire et al (2016)

152
1,646

MAP1LC3B IHC Improved PFS Ladoire et al (2015)

CLL 36 P2RX7 rs3751143 SNP analysis Disease stage Wiley et al (2002)

144 P2RX7 rs3751143 SNP analysis Marginally decreased OS Zhang et al (2003)

170 P2RX7 rs3751143 SNP analysis Decreased OS Thunberg et al
(2002)

111 P2RX7 rs3751143 SNP analysis No correlation with clinical
outcome

N€uckel et al (2004)

121 P2RX7 rs3751143 SNP analysis No correlation with clinical
outcome

Starczynski et al
(2003)

21 P2RX7 Immunoblotting Disease progression Adinolfi et al (2002)

Colorectal cancer 2,297 MAP1LC3B Gene expression profiling Increased OS Li et al (2020)

Gastric cancer 14 P2RY2 Gene expression profiling Disease Aquea et al (2014)

354 MAP1LC3C Gene expression profiling Improved OS Wang et al (2021)

354 ATG4D Gene expression profiling Decreased OS Wang et al (2021)

402 MAP1LC3B and
SQSTM1

IHC, immunoblotting a,nd RT–
PCR

Decreased OS Kim et al (2019)

Head and neck cancer 79 MAP1LC3B IHC Disease stage Jiang et al (2012)

Hepatocellular
carcinoma

190 MAP1LC3B IHC Improved OS Lee et al (2013)

1,086 BECN1 Gene expression profiling Improved OS Qin et al (2018)

Multiple myeloma 136 P2RX7 rs3751143 SNP analysis No correlation with clinical
outcome

Paneesha et al
(2006)

Ovarian cancer 1,497 BECN1 Gene expression profiling Improved OS and PFS Chen et al (2020c)

1,497 MAP1LC3B Gene expression profiling No correlation with clinical
outcome

Chen et al (2020c)

Pancreatic cancer 73 BECN1 IHC Disease progression Ko et al (2013)

86 BECN1 and
MAP1LC3B

IHC and RT–PCR Metastatic dissemination
Disease stage
Decreased OS

Cui et al (2019)

Papillary thyroid
cancer

121 P2RX7 rs3751143 SNP analysis Disease type Dardano et al
(2009)

121 P2RX7 rs208294 SNP analysis No effect on disease stage Dardano et al
(2009)

Salivary gland
carcinoma

48 BECN1 and
MAP1LC3B

IHC Low disease stage Li et al (2019a)

CLL, chronic lymphocytic leukemia; IHC, immunohistochemistry; MFS, metastasis-free survival; N/A, not available; OS, overall survival; PFS, progression-free
survival; SNP, single nucleotide polymorphism.
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clinicopathological variables could be attributed to rs3751143

in other cohorts of subjects with CLL (Starczynski et al, 2003; N€uckel

et al, 2004), multiple myeloma (Paneesha et al, 2006), and PTC (Dar-

dano et al, 2009), while increased expression levels of P2RX7 have

been linked to disease progression in an independent cohort of CLL

patients (Adinolfi et al, 2002). Likewise, elevated P2RY2 levels have

been associated with gastric malignant transformation (Aquea et al,

2014). A variety of immunohistochemical and transcriptional signa-

tures of proficient autophagic responses have been linked to wors-

ened disease outcome in cohorts of breast (Yamazaki et al, 2020),

gastric (Kim et al, 2019; Wang et al, 2021), pancreatic (Ko et al,

2013; Cui et al, 2019), and head and neck (Jiang et al, 2012) cancer

patients, while the contrary held true (or there was no impact on

clinicopathological variables) in independent series of patients with

breast (Ladoire et al, 2015; Tang et al, 2015; Ladoire et al, 2016),

ovarian (Chen et al, 2020c), hepatocellular (Lee et al, 2013; Qin et al,

2018), gastric (Wang et al, 2021), colorectal (Li et al, 2020), and sali-

vary gland (Li et al, 2019a) carcinoma.

In summary, while an abundant preclinical literature mechanisti-

cally implicates ATP secretion by stressed and dying cells in the

initiation of anticancer immune responses (Fig 2), additional, hith-

erto poorly characterized factors and mechanisms appear to influ-

ence the net effect of ATP signaling in the TME.

Immunosuppression by extracellular ATP metabolites

Extracellular ATP degradation by the sequential activity of CD39

and CD73 mediates immunosuppressive effects not only as a conse-

quence of limited ATP-dependent immunostimulation (see above),

but also due to the generation of adenosine, which per se promotes

tumor progression via immunological and non-immunological

mechanisms (Allard et al, 2020). Consistent with this notion,

transgene-driven overexpression of CD39 by malignant cells has

been associated with impaired anticancer immunity driven by

immunogenic chemotherapy (and hence poor disease outcome) in

syngeneic immunocompetent mouse models of fibrosarcoma

(Michaud et al, 2011; Pietrocola et al, 2016). Similarly, experimental

CD73 overexpression in human cervical carcinoma as well as

human and mouse breast carcinoma cells has been shown to

promote invasiveness and metastatic potential (Zhou et al, 2007;

Gao et al, 2017), at least in part as a consequence of autocrine–para-

crine adenosine signaling via adenosine A2b receptor (ADORA2B)

and ADORA2B-driven neovascularization (Stagg et al, 2010; Mittal

et al, 2016; Ludwig et al, 2020). Together with ADORA2A,

ADORA2B is indeed the main receptor for extracellular adenosine

signaling in the TME (Allard et al, 2020). However, while ADORA2B

is expressed by various malignant cell types including breast cancer

(Stagg et al, 2010; Lan et al, 2018), cervical cancer (Torres-Pineda

et al, 2020), and melanoma (Mittal et al, 2016) cells, as well as by

endothelial cells (Ludwig et al, 2020), DCs (Chen et al, 2020b), and

M2-like TAMs (Cohen et al, 2015), ADORA2A expression is mostly

restricted to myeloid cells (Nakamura et al, 2020), NK cells (Young

et al, 2018), CTLs (Kjaergaard et al, 2018; Shi et al, 2019), and

lymphatic endothelial cell precursors (Allard et al, 2019).

From a mechanistic standpoint, ADORA2A- and ADORAB-driven

immunosuppression results from the activation of intracellular

cyclic AMP (cAMP) signaling, the ultimate functional outcome of

which depends on the specific immune cell type expressing these

receptors. Thus, cAMP signaling directly inhibits TCR activation and

cytokine production in CTLs (Lappas et al, 2005), promotes fork-

head box P3 (FOXP3) synthesis and the upregulation of the co-

inhibitory receptor cytotoxic T lymphocyte-associated protein 4

(CTLA4) in TREG cells (Klein & Bopp, 2016), impairs NK cell effector

and secretory functions (Raskovalova et al, 2005), inhibits NF-jB-
dependent inflammatory responses (Minguet et al, 2005) and drives

the secretion of immunosuppressive cytokines such as IL10 from

TAMs and MDSCs (N�emeth et al, 2005; Cekic et al, 2014), and

perturbs the maturation of DCs (Kayhan et al, 2019). Of note, both

ADORA2A and ADORA2B can be upregulated by hypoxia (Sitkovsky

et al, 2014; Lan et al, 2018), in thus far resembling CD39 and CD73.

Thus, particularly hypoxic regions of the TME are expected to

exhibit robust adenosinergic signaling and hence (i) potent immuno-

suppression, (ii) accrued neovascularization, (iii) increased vascular

permeability, and (iv) enhanced cancer cell motility, de facto repre-

senting ideal niches for metastatic dissemination. This is further

aggravated by immunometabolic circuitries driven by hypoxia.

Specifically, hypoxic tumor regions are rich in glycolytic lactate,

which mediates multipronged immunosuppressive effects involving

CTLs (Brand et al, 2016), NK cells (Husain et al, 2013), TREG cells

(Watson et al, 2021), and MDSCs (Yang et al, 2020c).

Consistent with the potent immunosuppressive effects of adeno-

sine signaling in the TME, an abundant clinical literature links

elevated expression levels of adenosine-generating enzymes or

adenosine receptors to poor disease progression in cohorts of

patients with various tumors (Table 2). Thus, high levels of CD39

have been associated with advanced grade or poor disease outcome

in multiple cohorts of patients with CLL (Pulte et al, 2011), renal cell

carcinoma (Wu et al, 2020a), endometrial tumors (Aliagas et al,

2014), pancreatic carcinoma (K€unzli et al, 2007), and non-small cell

lung cancer (NSCLC; Li et al, 2017). Similar clinical findings have

been correlated with various single nucleotide polymorphisms

affecting Entpd1 (i.e., rs10748643, rs11188513, rs2226163) in

patients with colorectal carcinoma (Tokunaga et al, 2019; Gallerano

et al, 2020), but the functional impact of these variants on CD39

functions remains unclear. Moreover, abundant tumor-infiltrating or

circulating levels CD4+ or CD8+ cells expressing CD39 have been

linked to disease progression or resistance to therapy in various

cohorts of individuals with CLL (Perry et al, 2012), colorectal carci-

noma (Gallerano et al, 2020), head and neck squamous cell carci-

noma (Gallerano et al, 2020), pancreatic cancer (Gallerano et al,

2020), NSCLC (Koh et al, 2020), and renal cell carcinoma (Qi et al,

2020). Along these lines, intratumoral or circulating biomarkers of

CD73 proficiency (including expression levels and enzymatic activ-

ity) have been correlated with poor disease outcome in patients with

diffuse large B-cell lymphoma (Wang et al, 2019), ovarian cancer

(Turcotte et al, 2015), pancreatic carcinoma (Chen et al, 2020a;

Tahkola et al, 2021), NSCLC (Li et al, 2017), renal cell carcinoma

(Tripathi et al, 2020), breast cancer (Loi et al, 2013; Buisseret et al,

2018), glioma (Xu et al, 2013), colorectal carcinoma (Messaoudi

et al, 2020), and metastatic melanoma (Turiello et al, 2020). The

Nt5e polymorphism rs2229523 (of hitherto unclear functional signif-

icance) correlated with limited overall survival in patients with

colorectal carcinoma (Tokunaga et al, 2019), as did tumor infiltra-

tion by CD8+CD73+ cells in prostate cancer patients (Leclerc et al,

2016). Finally, ADORA2A expression or signaling was linked to poor
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disease outcome in individuals with diffuse large B-cell lymphoma

(Wang et al, 2019), renal carcinoma (Kamai et al, 2021), and a vari-

ety of tumors from The Cancer Genome Atlas (Sidders et al, 2020),

as was the ADORA2B polymorphism rs2015353 in patients with

colorectal cancer (Tokunaga et al, 2019), although the functional

implications of rs2015353 on ADORA2B activity remain to be eluci-

dated.

Of note, the discovery that the TME contains unusually high

levels of extracellular ATP has prompted innovative therapeutic

approaches that specifically harness this biochemical feature. For

instance, a monoclonal antibody specific for the immunostimulatory

receptor TNF receptor superfamily member 9 (TNFRSF9, best

known as CD137) has been engineered to drive CD137 signaling

only in the presence of nearly millimolar ATP levels, thus inducing

a potent anticancer immune response in the absence of adverse

effects due to extratumoral activity (Kamata-Sakurai et al, 2020).

This agent is currently being tested in combination with the immune

checkpoint inhibitor (ICI) atezolizumab (a PD-L1-blocking antibody)

for safety and preliminary efficacy in a phase I clinical trial enrolling

patients with solid tumors (JapicCTI-205153). Along similar lines, it

has recently been shown that a novel positive allosteric modulator

of P2RX7 (which only acts in the presence of high extracellular ATP

levels) potentiates the therapeutic effects of an ICI specific for

programmed cell death 1 (PDCD1, best known as PD-1) by stimulat-

ing DCs to release IL18 in support of the effector functions of tumor-

infiltrating NK cells and CTLs (Douguet et al, 2021). Incidentally,

these therapeutic applications provide an independent and convinc-

ing demonstration (mutatis mutandis, almost an “ex adiuvantibus”

proof) of the accuracy of early measurements of extracellular ATP

concentration in the TME (Pellegatti et al, 2008).

Taken together, these observations point to CD39/CD73-

dependent adenosine generation and consequent adenosinergic

signaling via ADORA2A and ADORA2B as a key immunosuppres-

sive mechanism supporting the progression and metastatic dissemi-

nation multiple tumors (Fig 3). Of note, while additional adenosine

receptors including ADORA1 and ADORA3 (which inhibit cAMP

signaling) are expressed by malignant cells and some tumor-

infiltrating immune cells (Stagg & Smyth, 2010), their role in

immunosurveillance remains poorly investigated.

Targeting purinergic signaling for cancer therapy

Consistent with the key role of extracellular ATP and its degradation

products in the control of immunosurveillance, a variety of pharma-

cological and genetic approaches designed to boost ATP-driven

immunostimulation or inhibit adenosine-dependent immunosup-

pression (alone or combined with other treatments) have been

shown to mediate prominent antineoplastic effects in immunocom-

petent mouse models of cancer.
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Figure 2. Immunostimulation by extracellular ATP.

Extracellular ATP mediates chemotactic effects on myeloid cells, upon binding to purinergic receptor P2Y2 (P2RY2), and promotes the inflammasome-dependent
secretion of interleukin 1 beta (IL1B) and IL18 upon binding to purinergic receptor P2X 7 (P2RX7). These effects are critical for mature dendritic cells (DCs) to prime
cytotoxic T lymphocytes (CTLs) against tumor-derived antigens and hence initiate adaptive anticancer immunity. Alongside, extracellular ATP triggers pyroptosis in
tumor-associated macrophages (TAMs), hence depleting the tumor microenvironment of generally immunosuppressive cells along with the emission of pyroptosis-
dependent immunostimulatory signals.
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Table 2. Pathophysiological relevance of adenosinergic signaling in human cancer.

Cancer
No.
patients Variable Technology Impact References

Breast cancer 122 CD73 IHC Decreased OS Buisseret et al (2018)

>6,000 NT5E Gene expression
profiling

Reduced pCR Loi et al (2013)

CLL 34 Circulating CD4+CD39+ and
CD8+CD39+ cells

Flow cytometry Disease stage Pulte et al (2011)

62 Circulating CD4+CD39+ T cells Flow cytometry Disease stage Perry et al (2012)

Colorectal cancer 107 ADORA2B rs2015353 SNP analysis Decreased OS Tokunaga et al (2019)

107
215

ENTPD1 rs11188513 SNP analysis Decreased OS Tokunaga et al (2019)

215 ENTPD1 rs2226163 SNP analysis Decreased OS Tokunaga et al (2019)

107 NT5E rs2229523 SNP analysis Decreased OS Tokunaga et al (2019)

129 ENTPD1, NT5E, and ADORA2B SNP analysis No correlation Tokunaga et al (2019)

60 Circulating CD8+CD39+ T cells Flow cytometry Disease progression Gallerano et al (2020)

60 ENTPD1 rs10748643 SNP analysis Disease progression Gallerano et al (2020)

215 CD73 IHC Disease progression
Decreased OS

Messaoudi et al (2020)

193 Circulating CD73 ELISA Decreased OS Messaoudi et al (2020)

DLBCL 91 ADORA2A on TILs IHC Decreased OS Wang et al (2019)

91 CD73 IHC Decreased OS Wang et al (2019)

Endometrial
tumors

29 CD39 IHC Tumor grade Aliagas et al (2014)

Glioma 500 NT5E Gene expression
profiling

Limited DFS Xu et al (2013)

HNSCC 19 Circulating CD8+CD39+ T cells Flow cytometry Disease progression Gallerano et al (2020)

Melanoma 546 Circulating CD73 AMPase activity Disease progression
Decreased OS

Turiello et al (2020)

NSCLC 132 Circulating CD8+CD39+ T cells Flow cytometry Decreased OS Koh et al (2020)

24 Circulating CD8+CD39+ MDSCs Flow cytometry Tumor infiltration by MDSCs Li et al (2017)

Ovarian cancer 208 CD73 IHC Decreased OS Turcotte et al (2015)

Pancreatic
cancer

28 ENTPD1 RT–PCR Decreased OS K€unzli et al (2007)

3 Circulating CD8+CD39+ T cells Flow cytometry Disease progression Gallerano et al (2020)

110 CD73 IHC Decreased OS Tahkola et al (2021)

168 NT5E Gene expression
profiling

Disease progression
Decreased OS

Chen et al (2020a)

Prostate cancer 285 Circulating CD8+CD73+ T cells IHC Disease progression Leclerc et al (2016)

Renal cell
carcinoma

60 ADORA2A expression IHC Metastatic dissemination
Decreased OS

Kamai et al (2021)

138 CD73 IHC Decreased OS Tripathi et al (2020)

243 CD8+CD39+ T cells IHC Disease progression Qi et al (2020)

367 CD39 IHC and RT–PCR Disease stage
Disease progression

Wu et al (2020a)

Various tumor
types

N/A ADORA2A-regulated gene expression Gene expression
profiling

Decreased OS Sidders et al (2020)

CLL, chronic lymphocytic leukemia; DBLCL, diffuse large B-cell lymphoma; DFS, disease-free survival; ELISA, enzyme-linked immunosorbent assay; IHC,
immunohistochemistry; MDSC, myeloid-derived suppressor cell; N/A, not available; OS, overall survival; pCR, pathological complete response; SNP, single
nucleotide polymorphism; TIL, tumor-infiltrating lymphocyte.
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Boosting ATP secretion with autophagy-activating maneuvers,

including weekly cycles of nutrient deprivation and administration

of so-called caloric restriction mimetics (CRMs, i.e., molecules that

induce autophagy and cause other biochemical correlates of nutrient

deprivation in the absence of sizeable weight loss), has been linked

to improved therapeutic responses to immunogenic chemotherapies

in immunocompetent mouse models of fibrosarcoma, correlating

with decreased infiltration by TREG cells, via a mechanism that

depends on expression of the essential autophagy gene autophagy-

related 5 (ATG5) in cancer cells and intact immune responses

(Pietrocola et al, 2016; Castoldi et al, 2020; Wu et al, 2020b). Along

similar lines, short-term starvation reportedly boosts the responsive-

ness of mouse breast cancer cells growing in immunocompetent

syngeneic hosts to radiation therapy (RT) (Saleh et al, 2013; Simone

et al, 2016). However, proficient autophagic responses in mouse

breast cancer cells limit the efficacy of RT in vivo as a consequence

of an improved disposal of permeabilized mitochondria that would

otherwise release mitochondrial DNA in the cytosol and trigger

cyclic GMP-AMP synthase (CGAS) signaling coupled to type I inter-

feron (IFN) secretion (Medler et al, 2019; Yamazaki et al, 2020).

This suggests that whole-body autophagy activation by short-term

fasting may support the efficacy of RT by mechanisms unrelated to

ATP secretion in the TME, potentially linked to improved autop-

hagic responses in immune cells, most of which rely on autophagy

for optimal functions (Clarke & Simon, 2019). That said, even

though cyclic/short-term nutrient deprivation could be safely imple-

mented in at least some cancer patients (Krstic et al, 2020), clini-

cians remain cautious on implementing clinical trials involving such

a nutritional measure. Similarly, while many CRMs with robust

anticancer activity in preclinical models are currently available as

over-the-counter medications (e.g., aspirin) (Castoldi et al, 2020) or

vitamin supplementations (e.g., nicotinamide) (Buqu�e et al, 2020),

clinical development remains at bay, at least in some cases

reflecting potential dosing issues.

Blocking CD39 or CD73 has also been associated with robust

antineoplastic effects in immunocompetent mouse models of cancer.

For instance, whole-body Entpd1 deletion as well as reconstitution

of radiosensitive hematopoietic cells with Entpd1�/� precursors

have been shown to inhibit in vivo growth and metastatic dissemi-

nation of mouse melanoma and colorectal carcinoma cells (Sun

et al, 2010; Perrot et al, 2019). Similar findings have been obtained

in Entpd1�/� mice xenografted with mouse melanoma or fibrosar-

coma cells and treated with immunogenic chemotherapy or ICIs

(Perrot et al, 2019), as well as with (i) monoclonal antibodies target-

ing human CD39 in human ENTPD1 knock-in mice bearing mouse

fibrosarcoma cells (Perrot et al, 2019), (ii) monoclonal antibodies

targeting mouse CD39 in wild-type mice used as hosts for mouse

melanoma, fibrosarcoma, or colorectal carcinoma cells (Li et al,

2019c; Yan et al, 2020), (iii) antisense oligonucleotides targeting

Entpd1 in wild-type mice bearing syngeneic breast cancer cells

(Kashyap et al, 2019), and (iv) pharmacological CD39 inhibitors in

wild-type mice xenografted with mouse colorectal carcinoma cells

(Michaud et al, 2011). Of note, in the latter models, the anticancer

effects of CD39 blockage could be abrogated by P2rx7 or Nlrp3

whole-body deletion, as well as by co-administration of monoclonal

antibodies targeting IL18 (Li et al, 2019c; Yan et al, 2020), formally

linking therapeutic activity to accrued extracellular ATP signaling

(rather than to mere adenosine depletion). Mice lacking Nt5e have
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Figure 3. Immunosuppression by extracellular ATP metabolites.

Extracellular adenosine (ADO) not only favors metastatic dissemination by binding adenosine A2b receptor (ADORA2B) on malignant cells, hence promoting invasiveness,
and endothelial cells (ECs), thus promoting neovascularization, but also modulates the functions of multiple immune cells upon interaction with ADORA2B or adenosine
A2a receptor (ADORA2A). Specifically, adenosine signaling inhibits dendritic cell (DC) maturation and interferes with the effector functions of cytotoxic T lymphocytes
(CTLs), B cells, and natural killer (NK) cells, while favoring immunosuppression by M2-like tumor-associated macrophages (TAMs), myeloid-derived suppressor cells
(MDSCs), and regulatory T (TREG) cells.
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Table 3. Ongoing clinical trials targeting purinergic signaling for cancer therapy.a

Agent Target Indications Phase Status Notes Ref.

AZD4635
(AstraZeneca)

ADORA2A CRPC II Recruiting In combination with oleclumab (anti-CD73), durvalumab
(anti-PD-L1)

NCT04089553

NSCLC I/II Active In combination with oleclumab (anti-CD73) NCT03381274

Solid tumors I Active Single agent and in combination with durvalumab
(anti-PD-L1), oleclumab (anti-CD73), docetaxel,
abiraterone acetate, enzalutamide

NCT02740985

Solid tumors I Recruiting Single agent NCT03980821

Ciforadenant
CPI-444/V81444
(Corvus
Pharmaceuticals)

ADORA2A NSCLC I/II Recruiting Single agent and in combination with atezolizumab
(anti-PD-L1)

NCT03337698

CPRC
Renal cell
carcinoma

I Recruiting Single agent and in combination with atezolizumab
(anti-PD-L1)

NCT02655822

EOS100850 (iTeos
Therapeutics)

ADORA2A Solid tumors I Recruiting Single agent NCT03873883

Etrumadenant
AB928 (Arcus
Biosciences)

ADORA2A
ADORA2B

CRC
GEC

I Active In combination with mFOLFOX NCT03720678

NSCLC I/I Recruiting In combination with carboplatin, pemetrexed and
pembrolizumab

NCT03846310

Ovarian
cancer
TNBC

I Recruiting In combination with IPI-549 (PI3c inhibitor), doxorubicin,
paclitaxel

NCT03719326

Solid tumors I Active In combination with zimberelimab (AB122, anti-PD1) NCT03629756

Taminadenant
NIR178/PBF-509
(Pablobio/Novartis)

ADORA2A NSCLC I Active Single agent and in combination with spartalizumab
(anti-PD-1)

NCT02403193

TNBC I Recruiting In combination with spartalizumab (anti-PD-1) and
LAG525 (anti-LAG-3)

NCT03742349

Solid tumors I Recruiting Single agent and in combination with NZV930 (anti-CD73),
spartalizumab (anti-PD1)

NCT03549000

Solid tumors I Recruiting Single agent and in combination with spartalizumab
(anti-PD-1); NZV930 (anti-CD73), KAZ954

NCT04237649

Solid tumors II Recruiting Single agent and in combination with spartalizumab
(anti-PD-1)

NCT03207867

SRF617 (Surface
Oncology)

CD39 Solid tumors I Recruiting Single agent and in combination with paclitaxel,
gemcitabine, pembrolizumab (anti-PD-L1)

NCT04336098

TTX-030 (AbbVie) CD39 Lymphoma
Solid tumors

I/I Recruiting Pembrolizumab (anti-PD-L1), docetaxel, gemcitabine NCT03884556

Solid tumors I Recruiting In combination with budigalimab (anti-PD-1), mFOLFOX NCT04306900

BMS986179 (Bristol
Myers Squibb)

CD73 Solid tumors I/II Active Single agent and in combination with nivolumab
(anti-PD-1)

NCT02754141

CPI-006 (Corvus
Pharmaceuticals)

CD73 NHL
Solid tumors

I/I Recruiting Single agent and in combination with ciforadenant
(ADORA2A antagonist), pembrolizumab (anti-PD-L1)

NCT03454451

LY3475070 (Eli-Lilly) CD73 Solid tumors I Recruiting Single agent or in combination with pembrolizumab
(anti-PD-L1)

NCT04148937

NZV930 (Surface
Oncology)

CD73 Solid tumors I Recruiting Single agent or in combination with spartalizumab
(anti-PD-1), NIR178 (ADORA2A antagonist)

NCT03549000

Oleclumab
MEDI9447
(AstraZeneca)

CD73 Bladder
cancer

I Recruiting In combination with durvalumab (anti-PD-L1) NCT03773666

NSCLC II Recruiting In combination with durvalumab (anti-PD-L1) NCT03334617

Ovarian
cancer

II Recruiting Single agent or in combination with durvalumab
(anti-PD-L1)

NCT03267589

Pancreatic
cancer

I/II Recruiting In combination with gemcitabine, paclitaxel, durvalumab
(anti-PD-L1), FOLFOX

NCT03611556

TNBC I/II Recruiting In combination with durvalumab (anti-PD-L1), paclitaxel NCT03742102
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been shown to be poorly permissive to the growth of syngeneic

glioblastoma, lymphoma, melanoma, ovarian cancer, colorectal

carcinoma, and breast cancer cells (Stagg et al, 2011; Wang et al,

2011; Yegutkin et al, 2011; Young et al, 2016; Yan et al, 2019).

Moreover, blockage of CD73 with monoclonal antibodies or phar-

macological agents mediates standalone therapeutic effects or

enhances the efficacy of other treatments (encompassing

chemotherapeutics, RT, and ICIs) in immunocompetent mouse

models of breast cancer (Loi et al, 2013; Allard et al, 2014; Young

et al, 2016; Wennerberg et al, 2020), colorectal carcinoma (Allard

et al, 2013; Hay et al, 2016; Tsukui et al, 2020), melanoma (Iannone

et al, 2014; Young et al, 2016), ovarian cancer (H€ausler et al, 2014;

Li et al, 2019b), head and neck squamous cell carcinoma (Deng

et al, 2018), and prostate cancer (Allard et al, 2013). In line with

such an abundant preclinical literature, several monoclonal antibod-

ies targeting CD39 or CD73 are currently being tested for their safety

and anticancer efficacy, either as standalone therapeutics or

combined with ICIs, in clinical trials (Table 3). Preliminary findings

from such studies point to an acceptable safety profile and promis-

ing clinical activity encompassing disease stabilization and (at least

in some patients) partial or complete responses (Mobasher et al,

2019; Bendell et al, 2020).

Genetic and pharmacological strategies for ADORA2A and

ADORA2B inhibition have also been shown to mediate anticancer

effects in preclinical cancer models. For instance, (whole-body or

myeloid cell-specific) Adora2a or Adora2b deletion has been

demonstrated to inhibit tumor growth in immunocompetent mice

bearing syngeneic melanoma (Ohta et al, 2006; Cekic et al, 2014;

Chen et al, 2020b), lymphoma (Waickman et al, 2012; Nakamura

et al, 2020), breast carcinoma (Beavis et al, 2013), or lung cancer

cells (Chen et al, 2020b). Consistent with this notion, pharmacologi-

cal ADORA2A (e.g., CPI-444, SCH58261, AZD4635) or ADORA2B

(e.g., PSB-1115) inhibitors have been attributed robust antineoplas-

tic properties in syngeneic mouse models of melanoma (Willingham

et al, 2018), fibrosarcoma (Beavis et al, 2017), breast cancer (Beavis

et al, 2013; Mittal et al, 2014; Beavis et al, 2015; Beavis et al, 2017),

lymphoma (Nakamura et al, 2020), colorectal carcinoma (Beavis

et al, 2015; Willingham et al, 2018), multiple myeloma (Yang et al,

2020b), and renal cell carcinoma (Willingham et al, 2018), espe-

cially when combined with ICIs or other immunotherapies. Impor-

tantly, at least in some of these models, co-inhibition of ADORA2A

and CD73 mediated superior tumor control as compared to inhibit-

ing ADORA2A or CD73 alone (Young et al, 2016), suggesting a non-

redundant role for these two factors in the establishment of local

immunosuppression. Consistent with these preclinical observations,

a number of ADORA2A or dual ADORA2A/ADORA2B inhibitors are

currently being investigated for safety and activity in clinical trials

(Table 3). Preliminary findings from these studies indicate that

many ADORA2A/ADORA2B inhibitors exhibit an acceptable safety

profile and at least some degree of clinical activity (Chiappori et al,

2018; Fong et al, 2020; Lim et al, 2020).

Additional approaches that may be harnessed to target adenosine

signaling in the TME encompass the use of CD38 or ENPP1 blockers

and strategies that revert tumor hypoxia (e.g., respiratory hyperoxy-

genation) (Hatfield et al, 2014; Hatfield & Sitkovsky, 2020).

However, CD38-specific agents (including the FDA-approved mono-

clonal antibody daratumumab) are currently used with the aim of

eradicating CD38-expressing myeloma cells (Facon et al, 2019), and

ENPP1 blockers are still in preclinical development (Carozza et al,

2020). Similarly, hyperoxygenation has been employed in the past

to improve radiosensitivity (because the ability of radiation therapy

to cause DNA damage in cancer cell depends on local oxygen

tension) but is no longer used for this purpose.

In summary, although a variety of strategies have been success-

fully used to target purinergic signaling in preclinical tumor models,

CD73, ADORA2A, and (less so) CD39 blockers are the only drugs

currently in clinical development as anticancer agents, for the most

part in combination with standard of care therapeutics or ICIs

(Table 3).

Concluding remarks

In summary, extracellular ATP and its degradation products play a

key role in the regulation of the tumor immune contexture, hence

have a major influence on the propensity of human neoplasms to

respond to therapy. While various agents aimed at boosting extra-

cellular ATP concentrations and/or limiting adenosine signaling are

already in clinical development, multiple questions to be addressed

and avenues to be explored remain. First, it will be important to

determine the contribution of P2RX7 and/or P2RY2 signaling in

cancer cells to tumor growth and metastatic dissemination in speci-

fic settings. Accumulating evidence indicates that some cancer cells

can harness extracellular ATP in support of disease progression and

resistance to therapy (Martin et al, 2017), suggesting that CD39

and/or CD73 inhibition may not mediate optimal anticancer effects

in some settings, and calling for the identification of cancer cell-

targeted P2RX7 or P2RY2 inhibitors. Second, it will be crucial to

develop combinatorial approaches based on the dual blockage of

ATP degradation and adenosine signaling, potentially in the context

of ICI-based immunotherapy. Indeed, it appears that the efficacy of

ADORA2A and/or ADORA2B blockers can be significantly boosted

by CD73 inhibition (Young et al, 2016), pointing to a functional

non-redundancy that may be harnessed for therapeutic purposes.

Also, while inhibiting ATP degradation or adenosine signaling medi-

ates anticancer effects per se (at least in various models), blocking

Table 3 (continued)

Agent Target Indications Phase Status Notes Ref.

TJ004309
TJD5 (Tracon
Pharmaceuticals)

CD73 Solid tumors I Recruiting In combination with atezolizumab (anti-PD-L1) NCT03835949

CRC, colorectal cancer; CRPC, castration-resistant prostate cancer; GEC, gastroesophageal cancer; NHL, non-Hodgkin lymphoma; NSCLC, non-small cell lung
cancer; TNBC, triple-negative breast cancer.
aRestricted to active and recruiting studies, as per www.clinicaltrials.gov on February 15, 2021.
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additional immunosuppressive pathways such as those controlled

by co-inhibitory receptors appears to provide improved disease

control in most cases (Beavis et al, 2017; Leone et al, 2018;

Goswami et al, 2020). Finally, it will be interesting to elucidate

whether and how purinergic signaling can be targeted in patients

with innate or acquired resistance to ICI-based immunotherapy,

reflecting the fact that exhausted T cells generally express high

levels of CD39 (Canale et al, 2018). Irrespective of these and other

incognita, purinergic signaling stands out as a particularly promising

target for the development of novel anticancer agents.
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